Linking substantial accessibility improvements to housing market dynamics

Prof. Joseph Ferreira, Jr.

Department of Urban Studies and Planning
Massachusetts Institute of Technology

Outline

- Introduction to research setting
- SimMobility microsimulation platform
- Developing ‘car-lite’ neighborhoods
- Modeling housing dynamics
- Singapore example
- Implications and conclusions
Research setting

- MIT Department of Urban Studies and Planning
 - Urban analytics and urban information systems
 - New ‘urban science’ undergrad degree
- SMART Centre in Singapore
 - Singapore/MIT Alliance for Research and Technology
 - “Future Urban Mobility” interdisciplinary research group
- Collaborative research with
 - Primary MIT PhD researcher: Rounaq Basu
 - Co-PIs of “Future Urban Mobility”: Professors Chris Zegras & Moshe Ben-Akiva
 - SimMobility ‘long term’ research team, especially: MIT PhD’s Roberto Ponce Lopez, Shan Jiang, Yi Zhu, Postdocs Xiaohu Zhang, Meng Zhou, and NUS Professor Mi Diao

SimMobility microsimulation platform

- Three modules
 - Long-Term (LT): Days/months/years
 - Medium-Term (MT): Hours/day
 - Short-Term (ST): Seconds/minutes
- Activity-based LUTI model
- Integration of behavioral submodels with feedback

SimMobility: Long-Term (LT)

- Synthetic population generated for base year
- Long-term urban choices
 - Housing-mobility
 - Vehicle ownership
 - Employment, education
- MT integration through Logsum-based accessibilities

Outline

- Introduction to research setting
- SimMobility microsimulation platform
- **Developing ‘car-lite’ neighborhoods**
- Modeling housing dynamics
- Singapore example
- Implications and conclusions

Modeling mobility improvements

- **Traditional LUTI example**
 - Consider building new highway or transit line
 - Use LUTI model to simulate travel patterns, travel times, land use change for one or two decades

- **Our case: link rollout of mobility improvements to choices about housing relocation and vehicle ownership**
 - Focus on initial years of a new initiative
 - E.g., evaluate ‘car-lite’ neighborhood development
 - Compare neighborhood change +/- enhanced mobility services

Why focus on daily housing market dynamics?

- **CGE models show forces leading to long run equilibrium**
 - But they don’t simulate the possible paths along the way

- **LUTI models typically simulate multiple decades**
 - But many rules and practices can change along the way

- **New mobility technologies will first be tested in pilot projects**
 - Will ‘car-lite’ neighborhoods be effective, expensive, attractive...? To whom?
 - Household relocation needs attention
 - Housing market is reasonably open and can respond to changes much faster than (re)development and land use change
 - Initial experience will constrain implementation paths
 - E.g., roller coaster ride of dockless bikes and e-scooters
 - Adverse early experience could lead to constraining policy & regulation
Our Approach

- Modeling buyer / seller response to new mobilities
 - Convert mobility improvements into accessibility benefits
 - Focus on housing market at household / housing unit scale
 - Consider daily searching, pricing, and bidding behavior
 - Along with reconsideration of vehicle holdings
- Simulate pilot project rollout in a ‘study area’
 - Simulate daily housing market dynamics of buyer / seller interaction
 - Explore which study areas work best
 - Which neighborhood? what rules? what side-effects?
 - Start with plausible accessibility adjustments
 - Later on, simulate effects for specific places and mobility technologies

Outline

- Introduction to research setting
- SimMobility microsimulation platform
- Developing ‘car-lite’ neighborhoods
- Modeling housing dynamics
- Singapore example
- Implications and conclusions
Modeling Daily Housing Market Dynamics in SimMobility-LT

- Awaken Likelihood based on moving rates and ‘alerts’
- Bid based on willingness to pay submodel and consumer surplus calculation
- Asking price based on hedonic submodel
- Reassess vehicle, job, school

Simulating a ‘car-lite’ pilot project

- Measuring accessibility improvements
 - Begin with 2012 calibration of SimMobility for Singapore
 - Transport model (MT+ST) translates new mobility into accessibility measures
- Behavioral responses to accessibility improvements
 - Increased buyer awareness (choice set construction)
 - Increased buyer valuation (WTP model)
 - Increased seller asking price (hedonic market price model)
 - Increased buyer valuation of being vehicle-free (vehicle ownership model)
- Run market simulation for 365+ days
 - Does study area become more ‘vehicle-free’?
 - Who moves in/out of study area?
 - How sensitive are results to accessibility improvements?
 - How sensitive to characteristics of study area?
Outline

- Introduction to research setting
- SimMobility microsimulation platform
- Developing ‘car-lite’ neighborhoods
- Modeling housing dynamics
- **Singapore example**
- Implications and conclusions

Singapore
with major highways & landmarks (maps.google.com)

- Central Area
- Changi Airport
- Central Reserve
- Jurong Island

725 sq.km
5.7 m. persons
Singapore Population Density by Planning Area (people/ha)

Simulate 3 possible ‘Car-Lite’ Study Areas (with 4-7% of all housing in each study area)

Singapore SimMobility calibration

Data sources (2012 synthetic population & model calibration)
- Travel surveys (HITS 2008, 2012, 2016; LTA)
- Census (Singstat, MOM, …)
- Real estate transactions (REALIS & HDB 2000-2016)

Resolution and scale
- Households
 - 1.15m 'resident' households
 - 81.3% in public (HDB) housing
 - 4.1m of 5.1m individuals

Workstation performance
- 45 min/yr on 8 thread, 32 GB Windows-10 WSL2/Ubuntu
- 75 min/5-yr on 96 thread 64 GB Ubuntu

<table>
<thead>
<tr>
<th>Area</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Regions</td>
<td>6</td>
</tr>
<tr>
<td>Planning Areas</td>
<td>55</td>
</tr>
<tr>
<td>Traffic Analysis Zones</td>
<td>1,169</td>
</tr>
<tr>
<td>Postcodes</td>
<td>116,624</td>
</tr>
</tbody>
</table>
‘Car-lite’ Scenario Assumptions

- Accessibility improvement
 - **For housing valuation:** assume logsum increase = fraction of the standard deviation across Singapore
 - **For vehicle ownership choice:** reduce car/no-car logsum gap by fraction of the average gap across Singapore

- Behavioral scenarios
 - **Scenario I:** Awareness only (increase in choice set likelihood)
 - **Scenario II:** Buyer valuation (willingness to pay, WTP, increases)
 - **Scenario III:** Buyer & Seller valuation (WTP and hedonic price increase)

- Vehicle ownership
 - All study area residents re-evaluate during simulated year
 - All movers re-evaluate vehicle holdings when they move

Car-free response to accessibility improvement*

Change in car-free percent by Scenario and ∆ Accessibility
(Study area = Toa Payoh)
- Slight consistent drop for baseline
- Closing car-free gap motivates change
- But, market behavior diminishes net impact
 - When buyer / seller valuations respond (scenarios II and III), car-free effect drops
 - Why?

Gentrification Effect

Percent change in Household income by Scenario and \(\Delta \) Accessibility (Study area = Toa Payoh)

for Scenarios II and III:

- In-movers have higher incomes than out-movers
- Higher income HHs much more likely to own a car
- Gap grows non-linearly with accessibility \(\Delta \)

Which neighborhood characteristics matter & how much?*

<table>
<thead>
<tr>
<th>Planning Area</th>
<th>HHs</th>
<th>Housing Units</th>
<th>Vacancy Rate (%)</th>
<th>Car-free (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toa Payoh</td>
<td>43,789</td>
<td>45,715</td>
<td>3.71</td>
<td>66.6</td>
</tr>
<tr>
<td>Pasir Ris</td>
<td>38,116</td>
<td>41,103</td>
<td>7.27</td>
<td>49.1</td>
</tr>
<tr>
<td>Punggol & Sengkang</td>
<td>68,694</td>
<td>78,817</td>
<td>10.87</td>
<td>51.6</td>
</tr>
<tr>
<td>Singapore*</td>
<td>1,148,070</td>
<td>1,235,837</td>
<td>6.56</td>
<td>54.3</td>
</tr>
</tbody>
</table>

*Households with head as Singapore citizen or Permanent Resident

- Three study areas with varying vacancy and vehicle-free rates
- Market effects can reduce car-free gain by almost 50%
- ‘Mere’ mobility improvements aren’t enough
- Composition of housing inventory matters (!)

Outline

- Introduction to research setting
- SimMobility microsimulation platform
- Developing ‘car-lite’ neighborhoods
- Modeling housing dynamics
- Singapore example
- Implications and conclusions

What’s the “recipe” for ‘car-lite’ neighborhoods?

- Car-lite neighborhood design = Mobility + Housing policies (!)
 - Accessibility improvements can induce gentrification, which reduces car-lite gains
 - TRD paper compares paired combinations of vacancy / vehicle-free rates

- Simulating specific pilots with SimMobility LT-MT-ST integration
 - Other FM projects have explored specific Singapore projects using all three modules
 - E.g., adding fleets of AMOD vehicles with realistic size/price with/without private car restrictions
Ongoing Research

- Testing effectiveness of housing market interventions
 - Consider increasing housing supply within study area
 - Add housing that is attractive to HHs most likely to become vehicle-free
 - Provide a mix of affordable and market-rate housing units

- Preliminary results
 - Simply increasing supply moves further away from intended outcomes
 - Higher-income households still outbid for newly added housing
 - Providing targeted housing (with subsidies) could be effective

Policy Relevance of LUTI Modeling

- Takeaways regarding particular features
 - Realistic modeling of initial years of technology adoption
 - For some policies, early experience is crucial to acceptance
 - Especially important when behavior can change quickly long before land use change
 - Value of exploring real estate market dynamics at daily to yearly scale
 - Several types of behavioral changes are possible & trends are visible within a year
 - Agent-based LUTI modeling facilitates relevant programming
 - But, computational intensity is still considerable

- Need for synthetic population development / maintenance
 - Often overlooked, private, unreproducible, insufficiently heterogeneous

- Importance of open data, tools, sandboxes
 - With appropriate privacy protections and benchmark datasets
 - ‘Virtual City’ construction and use described in forthcoming JTLU paper
Questions?

Joseph Ferreira and Rounaq Basu
<jf@mit.edu> <rounaq@mit.edu>

Acknowledgements
• Funded in part by the Singapore National Research Foundation through the Future Urban Mobility group at the Singapore-MIT Alliance for Research and Technology Center.
• We appreciate the contributions of past and present members of the SimMobility team, as well as the Singapore agencies that assisted with the data used to calibrate the Singapore version of SimMobility.

Collaborative research with
• Primary MIT PhD researcher: Rounaq Basu <rounaq@mit.edu>
• Co-PIs of “Future Urban Mobility”: Professors Chris Zegras & Moshe Ben-Akiva
• SimMobility ‘long term’ research team, especially: MIT PhD’s Roberto Ponce Lopez, Shan Jiang, Yi Zhu, Postdocs Xiaohu Zhang, Meng Zhou, and NUS Professor Mi Diao